
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Here is a quick explanation of all the standard instructions supported
by the Arduino language.

For a more detailed reference, see: arduino.cc/en/Reference/HomePage

Structure
An Arduino sketch runs in two parts:

void setup()

This is where you place the initialisation code—the instructions that set
up the board before the main loop of the sketch starts.

void loop()

This contains the main code of your sketch. It contains a set of instruc-
tions that get repeated over and over until the board is switched off.

Special symbols
Arduino includes a number of symbols to delineate lines of code, com-
ments, and blocks of code.

; (semicolon)
Every instruction (line of code) is terminated by a semicolon. This syntax
lets you format the code freely. You could even put two instructions on
the same line, as long as you separate them with a semicolon. (However,
this would make the code harder to read.)

Example:
delay(100);

{} (curly braces)
This is used to mark blocks of code. For example, when you write code for
the loop() function, you have to use curly braces before and after the code.

Example:
void loop() {

 Serial.println("ciao");

}

Appendix C 95

Appendix C/Arduino
Quick Reference

www.it-ebooks.info

http://www.it-ebooks.info/

96 Getting Started with Arduino

comments
These are portions of text ignored by the Arduino processor, but are ex-
tremely useful to remind yourself (or others) of what a piece of code does.

There are two styles of comments in Arduino:
// single-line: this text is ignored until the end of the line

/* multiple-line:

 you can write

 a whole poem in here

*/

Constants
Arduino includes a set of predefined keywords with special values.
HIGH and LOW are used, for example, when you want to turn on or off
an Arduino pin. INPUT and OUTPUT are used to set a specific pin to be
either and input or an output

true and false indicate exactly what their names suggest: the truth or
falsehood of a condition or expression.

Variables
Variables are named areas of the Arduino’s memory where you can
store data that you can use and manipulate in your sketch. As the name
suggests, they can be changed as many times as you like.

Because Arduino is a very simple processor, when you declare a variable
you have to specify its type. This means telling the processor the size of
the value you want to store.

Here are the datatypes that are available:

boolean
Can have one of two values: true or false.

char
Holds a single character, such as A. Like any computer, Arduino stores
it as a number, even though you see text. When chars are used to store
numbers, they can hold values from –128 to 127.

www.it-ebooks.info

http://www.it-ebooks.info/

NOTE: There are two major sets of characters available on computer
systems: ASCII and UNICODE. ASCII is a set of 127 characters that
was used for, among other things, transmitting text between serial
terminals and time-shared computer systems such as mainframes
and minicomputers. UNICODE is a much larger set of values used by
modern computer operating systems to represent characters in a
wide range of languages. ASCII is still useful for exchanging short bits
of information in languages such as Italian or English that use Latin
characters, Arabic numerals, and common typewriter symbols for
punctuation and the like.

byte
Holds a number between 0 and 255. As with chars, bytes use only one
byte of memory.

int
Uses 2 bytes of memory to represent a number between –32,768 and
32,767; it’s the most common data type used in Arduino.

unsigned int
Like int, uses 2 bytes but the unsigned prefix means that it can’t store
negative numbers, so its range goes from 0 to 65,535.

long
This is twice the size of an int and holds numbers from –2,147,483,648 to
2,147,483,647.

unsigned long
Unsigned version of long; it goes from 0 to 4,294,967,295.

float
This quite big and can hold floating-point values, a fancy way of saying
that you can use it to store numbers with a decimal point in it. It will eat up
4 bytes of your precious RAM and the functions that can handle them use
up a lot of code memory as well. So use floats sparingly.

double
Double-precision floating-point number, with a maximum value of
1.7976931348623157 x 10308. Wow, that’s huge!

string
A set of ASCII characters that are used to store textual information (you
might use a string to send a message via a serial port, or to display on

Appendix C 97

www.it-ebooks.info

http://www.it-ebooks.info/

98 Getting Started with Arduino

an LCD display). For storage, they use one byte for each character in the
string, plus a null character to tell Arduino that it’s the end of the string.
The following are equivalent:
 char string1[] = "Arduino"; // 7 chars + 1 null char

 char string2[8] = "Arduino"; // Same as above

array
A list of variables that can be accessed via an index. They are used to
build tables of values that can easily be accessed. For example, if you
want to store different levels of brightness to be used when fading an LED,
you could create six variables called light01, light02, and so on. Better yet,
you could use a simple array like:
int light[6] = {0, 20, 50, 75, 100};

The word “array” is not actually used in the variable declaration: the
symbols [] and {} do the job.

Control Structures
Arduino includes keywords for controlling the logical flow of your sketch.

if . . . else
This structure makes decisions in your program. if must be followed by
a question specified as an expression contained in parentheses. If the
expression is true, whatever follows will be executed. If it’s false, the block
of code following else will be executed. It’s possible to use just if without
providing an else clause.

Example:
if (val == 1) {

 digitalWrite(LED,HIGH);

}

for
Lets you repeat a block of code a specified number of times.

Example:
for (int i = 0; i < 10; i++) {

 Serial.print("ciao");

}

switch case
The if statement is like a fork in the road for your program. switch case is
like a massive roundabout. It lets your program take a variety of directions

www.it-ebooks.info

http://www.it-ebooks.info/

depending on the value of a variable. It’s quite useful to keep your code
tidy as it replaces long lists of if statements.

Example:
switch (sensorValue) {

 case 23:

 digitalWrite(13,HIGH);

 break;

 case 46:

 digitalWrite(12,HIGH);

 break;

 default: // if nothing matches this is executed

 digitalWrite(12,LOW);

 digitalWrite(13,LOW);

}

while
Similar to if, this executes a block of code while a certain condition is true.

Example:
// blink LED while sensor is below 512

sensorValue = analogRead(1);

while (sensorValue < 512) {

 digitalWrite(13,HIGH);

 delay(100);

 digitalWrite(13,HIGH);

 delay(100);

 sensorValue = analogRead(1);

}

do . . . while
Just like while, except that the code is run just before the the condition
is evaluated. This structure is used when you want the code inside your
block to run at least once before you check the condition.

Example:

do {

 digitalWrite(13,HIGH);

 delay(100);

 digitalWrite(13,HIGH);

 delay(100);

 sensorValue = analogRead(1);

} while (sensorValue < 512);

Appendix C 99

www.it-ebooks.info

http://www.it-ebooks.info/

100 Getting Started with Arduino

break
This term lets you leave a loop and continue the execution of the code
that appears after the loop. It’s also used to separate the different sections
of a switch case statement.

Example:
// blink LED while sensor is below 512

do {

 // Leaves the loop if a button is pressed

 if (digitalRead(7) == HIGH)

 break;

 digitalWrite(13,HIGH);

 delay(100);

 digitalWrite(13,LOW);

 delay(100);

 sensorValue = analogRead(1);

} while (sensorValue < 512);

continue
When used inside a loop, continue lets you skip the rest of the code inside
it and force the condition to be tested again.

Example:
for (light = 0; light < 255; light++)

{

 // skip intensities between 140 and 200

 if ((x > 140) && (x < 200))

 continue;

 analogWrite(PWMpin, light);

 delay(10);

}

return
Stops running a function and returns from it. You can also use this to
return a value from inside a function.

For example, if you have a function called computeTemperature() and you
want to return the result to the part of your code that invoked the function
you would write something like:
int computeTemperature() {

 int temperature = 0;

 temperature = (analogRead(0) + 45) / 100;

 return temperature;

}

www.it-ebooks.info

http://www.it-ebooks.info/

Arithmetic and formulas
You can use Arduino to make complex calculations using a special syntax.
+ and – work like you’ve learned in school, and multiplication is represent-
ed with an * and division with a /.

There is an additional operator called “modulo” (%), which returns
the remainder of an integer division. You can use as many levels of
parentheses as necessary to group expressions. Contrary to what you
might have learned in school, square brackets and curly brackets are
reserved for other purposes (array indexes and blocks, respectively).

Examples:
a = 2 + 2;

light = ((12 * sensorValue) - 5) / 2;

remainder = 3 % 2; // returns 1

Comparison Operators
When you specify conditions or tests for if, while, and for statements,
these are the operators you can use:

== 	 equal to
!= 	 not equal to
< 	 less than
> 	 greater than
<= 	 less than or equal to
>= 	 greater than or equal to

Boolean Operators
These are used when you want to combine multiple conditions. For example,
if you want to check whether the value coming from a sensor is between 5
and 10, you would write:

if ((sensor => 5) && (sensor <=10))

There are three operators: and, represented with &&; or, represented with
||; and finally not, represented with !.

Compound Operators
These are special operators used to make code more concise for some
very common operations like incrementing a value.

Appendix C 101

www.it-ebooks.info

http://www.it-ebooks.info/

102 Getting Started with Arduino

For example, to increment value by 1 you would write:

value = value +1;

but using a compound operator, this becomes:

value++;

increment and decrement (–– and ++)
These increment or decrement a value by 1. Be careful: if you write i++
this increments i by 1 and evaluates to the equivalent of i+1; ++i evaluates
to the value of i and then increments i. The same applies to ––.

+= , –=, *= and /=
These make it shorter to write certain expressions. The following two
expressions are equivalent:

a = a + 5;

a += 5;

Input and output functions
Arduino includes functions for handling input and output. You’ve already
seen some of these in the example programs throughout the book.

pinMode(pin, mode)
Reconfigures a digital pin to behave either as an input or an output.

Example:
pinMode(7,INPUT); // turns pin 7 into an input

digitalWrite(pin, value)
Turns a digital pin either on or off. Pins must be explicitly made into an
output using pinMode before digitalWrite will have any effect.

Example:
digitalWrite(8,HIGH); // turns on digital pin 8

int digitalRead(pin)
Reads the state of an input pin, returns HIGH if the pin senses some
voltage or LOW if there is no voltage applied.

Example:
val = digitalRead(7); // reads pin 7 into val

www.it-ebooks.info

http://www.it-ebooks.info/

int analogRead(pin)
Reads the voltage applied to an analog input pin and returns a number
between 0 and 1023 that represents the voltages between 0 and 5 V.

Example:
val = analogRead(0); // reads analog input 0 into val

analogWrite(pin, value)
Changes the PWM rate on one of the pins marked PWM. pin may be 11,10,
9, 6, 5, 3. value may be a number between 0 and 255 that represents the
scale between 0 and 5 V output voltage.

Example:
analogWrite(9,128); // Dim an LED on pin 9 to 50%

shiftOut(dataPin, clockPin, bitOrder, value)
Sends data to a shift register, devices that are used to expand the number
of digital outputs. This protocol uses one pin for data and one for clock.
bitOrder indicates the ordering of bytes (least significant or most
significant) and value is the actual byte to be sent out.

Example:
shiftOut(dataPin, clockPin, LSBFIRST, 255);

unsigned long pulseIn(pin, value)
Measures the duration of a pulse coming in on one of the digital inputs.
This is useful, for example, to read some infrared sensors or accelerom-
eters that output their value as pulses of changing duration.

Example:
time = pulsein(7,HIGH); // measures the time the next

 // pulse stays high

Time functions
Arduino includes functions for measuring elapsed time and also for pausing
the sketch.

unsigned long millis()
Returns the number of milliseconds that have passed since the sketch
started.

Example:
duration = millis()-lastTime; // computes time elapsed since "lastTime"

Appendix C 103

www.it-ebooks.info

http://www.it-ebooks.info/

104 Getting Started with Arduino

delay(ms)
Pauses the program for the amount of milliseconds specified.

Example:
delay(500); // stops the program for half a second

delayMicroseconds(us)
Pauses the program for the given amount of microseconds.

Example:
delayMicroseconds(1000); // waits for 1 millisecond

Math functions
Arduino includes many common mathematical and trigonometric
functions:

min(x, y)
Returns the smaller of x and y.

Example:
val = min(10,20); // val is now 10

max(x, y)
Returns the larger of x and y.

Example:
val = max(10,20); // val is now 20

abs(x)
Returns the absolute value of x, which turns negative numbers into
positive. If x is 5 it will return 5, but if x is –5, it will still return 5.

Example:
val = abs(-5); // val is now 5

constrain(x, a, b)
Returns the value of x, constrained between a and b. If x is less than a, it
will just return a and if x is greater than b, it will just return b.

Example:
val = constrain(analogRead(0), 0, 255); // reject values bigger than 255

www.it-ebooks.info

http://www.it-ebooks.info/

map(value, fromLow, fromHigh, toLow, toHigh)
Maps a value in the range fromLow and maxLow to the range toLow and
toHigh. Very useful to process values from analogue sensors.

Example:
val = map(analogRead(0),0,1023,100, 200); // maps the value of

 // analog 0 to a value

 // between 100 and 200

double pow(base, exponent)
Returns the result of raising a number (base) to a value (exponent).

Example:
double x = pow(y, 32); // sets x to y raised to the 32nd power

double sqrt(x)
Returns the square root of a number.

Example:
double a = sqrt(1138); // approximately 33.73425674438

double sin(rad)
Returns the sine of an angle specified in radians.

Example:
double sine = sin(2); // approximately 0.90929737091

double cos(rad)
Returns the cosine of an angle specified in radians.

Example:
double cosine = cos(2); // approximately -0.41614685058

double tan(rad)
Returns the tangent of an angle specified in radians.

Example:
double tangent = tan(2); // approximately -2.18503975868

Appendix C 105

www.it-ebooks.info

http://www.it-ebooks.info/

106 Getting Started with Arduino

Random number functions
If you need to generate random numbers, you can use Arduino’s pseudo-
random number generator.

randomSeed(seed)
Resets Arduino’s pseudorandom number generator. Although the distribu-
tion of the numbers returned by random() is essentially random, the se-
quence is predictable. So, you should reset the generator to some random
value. If you have an unconnected analog pin, it will pick up random noise
from the surrounding environment (radio waves, cosmic rays, electromag-
netic interference from cell phones and fluorescent lights, and so on).

Example:
randomSeed(analogRead(5)); // randomize using noise from pin 5

long random(max)
long random(min, max)
Returns a pseudorandom long integer value between min and max – 1.
If min is not specified, the lower bound is 0.

Example:
long randnum = random(0, 100); // a number between 0 and 99

long randnum = random(11); // a number between 0 and 10

Serial communication
As you saw in Chapter 5, you can communicate with devices over the USB
port using a serial communication protocol. Here are the serial functions.

Serial.begin(speed)
Prepares Arduino to begin sending and receiving serial data. You’ll
generally use 9600 bits per second (bps) with the Arduino IDE serial moni-
tor, but other speeds are available, usually no more than 115,200 bps.

Example:
Serial.begin(9600);

Serial.print(data)
Serial.print(data, encoding)
Sends some data to the serial port. The encoding is optional; if not
supplied, the data is treated as much like plain text as possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Examples:
Serial.print(75); // Prints "75"

Serial.print(75, DEC); // The same as above.

Serial.print(75, HEX); // "4B" (75 in hexadecimal)

Serial.print(75, OCT); // "113" (75 in octal)

Serial.print(75, BIN); // "1001011" (75 in binary)

Serial.print(75, BYTE); // "K" (the raw byte happens to

 // be 75 in the ASCII set)

Serial.println(data)
Serial.println(data, encoding)
Same as Serial.print(), except that it adds a carriage return and linefeed
(\r\n) as if you had typed the data and then pressed Return or Enter.

Examples:
Serial.println(75); // Prints "75\r\n"

Serial.println(75, DEC); // The same as above.

Serial.println(75, HEX); // "4B\r\n"

Serial.println(75, OCT); // "113\r\n"

Serial.println(75, BIN); // "1001011\r\n"

Serial.println(75, BYTE); // "K\r\n"

int Serial.available()
Returns how many unread bytes are available on the Serial port for
reading via the read() function. After you have read() everything available,
Serial.available() returns 0 until new data arrives on the serial port.

Example:
int count = Serial.available();

int Serial.read()
Fetches one byte of incoming serial data.

Example:
int data = Serial.read();

Serial.flush()
Because data may arrive through the serial port faster than your program
can process it, Arduino keeps all the incoming data in a buffer. If you need
to clear the buffer and let it fill up with fresh data, use the flush() function.

Example:
Serial.flush();

Appendix C 107

www.it-ebooks.info

http://www.it-ebooks.info/

	1/Introduction
	Intended Audience
	What Is Physical Computing?

	2/The Arduino Way
	Prototyping
	Tinkering
	Patching
	Circuit Bending
	Keyboard Hacks
	We Love Junk!
	Hacking Toys
	Collaboration

	3/The Arduino Platform
	The Arduino Hardware
	The Software (IDE)
	Installing Arduino on Your Computer
	Installing Drivers: Macintosh
	Installing Drivers: Windows
	Port Identification: Macintosh
	Port Identification: Windows

	4/Really Getting Started with Arduino
	Anatomy of an Interactive Device
	Sensors and Actuators
	Blinking an LED
	Pass Me the Parmesan
	Arduino Is Not for Quitters
	Real Tinkerers Write Comments
	The Code, Step by Step
	What We Will Be Building
	What Is Electricity?
	Using a Pushbutton to Control the LED
	How Does This Work?
	One Circuit, A Thousand Behaviours

	5/Advanced Inputand Output
	Trying Out Other On/Off Sensors
	Controlling Light with PWM
	Use a Light Sensor Instead of the Pushbutton
	Analog Input
	Try Other Analogue Sensors
	Serial Communication
	Driving Bigger Loads (Motors, Lamps, and the Like)
	Complex Sensors

	6/Talking to the Cloud
	Planning
	Coding
	Assembling the Circuit
	Here’s How to Assemble It

	7/Troubleshooting
	Testing the Board
	Testing Your Breadboarded Circuit
	Isolating Problems
	Problems with the IDE
	How to Get Help Online

	Appendix A/The Breadboard
	Appendix B/Reading Resistors and Capacitors
	Appendix C/Arduino Quick Reference
	Structure
	Special symbols
	Constants
	Variables
	Control Structures
	Arithmetic and formulas
	Comparison Operators
	Boolean Operators
	Compound Operators
	Input and output functions
	Time functions
	Math functions
	Random number functions
	Serial communication

	Appendix D/Reading Schematic Diagrams
	Index

